Fisetin Inhibits Hyperglycemia-Induced Proinflammatory Cytokine Production by Epigenetic Mechanisms
نویسندگان
چکیده
Diabetes is characterized by a proinflammatory state, and several inflammatory processes have been associated with both type 1 and type 2 diabetes and the resulting complications. High glucose levels induce the release of proinflammatory cytokines. Fisetin, a flavonoid dietary ingredient found in the smoke tree (Cotinus coggygria), and is also widely distributed in fruits and vegetables. Fisetin is known to exert anti-inflammatory effects via inhibition of the NF-κB signaling pathway. In this study, we analyzed the effects of fisetin on proinflammatory cytokine secretion and epigenetic regulation, in human monocytes cultured under hyperglycemic conditions. Human monocytic (THP-1) cells were cultured under control (14.5 mmol/L mannitol), normoglycemic (NG, 5.5 mmol/L glucose), or hyperglycemic (HG, 20 mmol/L glucose) conditions, in the absence or presence of fisetin. Fisetin was added (3-10 μM) for 48 h. While the HG condition significantly induced histone acetylation, NF-κB activation, and proinflammatory cytokine (IL-6 and TNF-α) release from THP-1 cells, fisetin suppressed NF-κB activity and cytokine release. Fisetin treatment also significantly reduced CBP/p300 gene expression, as well as the levels of acetylation and HAT activity of the CBP/p300 protein, which is a known NF-κB coactivator. These results suggest that fisetin inhibits HG-induced cytokine production in monocytes, through epigenetic changes involving NF-κB. We therefore propose that fisetin supplementation be considered for diabetes prevention.
منابع مشابه
Immunotherapeutic effects of pentoxifylline in type 1 diabetic mice and its role in the response of T-helper lymphocytes
Objective(s):Pentoxifylline is an immunomodulatory and anti-inflammatory agent and is used in vascular disorders. It has been shown that pentoxifylline inhibits proinflammatory [d1] cytokines production. The purpose of this study was to investigate the therapeutic effects of pentoxifylline on the treatment of autoimmune diabetes in mice. Materials and Methods: Diabetes was induced by multiple l...
متن کاملFisetin Modulates Antioxidant Enzymes and Inflammatory Factors to Inhibit Aflatoxin-B1 Induced Hepatocellular Carcinoma in Rats
Fisetin, a known antioxidant, has been found to be cytotoxic against certain cell lines. However, the mechanism by which it inhibits tumor growth in vivo remains unexplored. Recently, we have demonstrated that Aflatoxin-B1 (AFB1) induced hepatocarcinogenesis is associated with activation of oxidative stress-inflammatory pathway in rat liver. The present paper describes the effect of in vivo tre...
متن کاملThalidomide attenuates multiple low-dose streptozotocin-induced diabetes in mice by inhibition of proinflammatory cytokines.
Thalidomide is an immunomodulatory and anti-inflammatory agent and is used in autoimmune disorders. It has been shown that thalidomide inhibits proinflammatory cytokines production. The purpose of this study was to investigate the effect of thalidomide on the prevention of autoimmune diabetes in mice. Diabetes was induced by multiple low-dose of streptozotocin (MLDS) injection. Mice were treate...
متن کاملLuteolin and fisetin suppress oxidative stress by modulating sirtuins and forkhead box O3a expression under in vitro diabetic conditions
BACKGROUND/OBJECTIVE Chronic hyperglycemia induces oxidative stress via accumulation of reactive oxygen species (ROS) and contributes to diabetic complications. Hyperglycemia induces mitochondrial superoxide anion production through the increased activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. This study aimed to determine whether fisetin and luteolin treatments suppres...
متن کاملدرمان موشهای دیابتیک نوع 1 با آل- ترانس رتینوئیک اسید از طریق مهار سایتوکاینهای پیش التهابی
Background & Aims: Type 1 diabetes is an autoimmune condition associated with the T-cell–mediated destruction of Pancreatic β cells. Vitamin A (retinol) and its metabolites (such as all-trans retinoic acid (ATRA)) have a variety of biological activities including immunomodulatory action in a number of inflammatory and autoimmune conditions. The purpose of this study was to investigate the e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012